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Background GLM-based weather generators Rglimclim Example Summary

The HydEF project

Motivating example

HydEF project
(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

Detailed hydro(geo)logical models require high-resolution weather inputs,
consistent with changing large-scale synoptic conditions as obtained e.g.
from reanalysis products or GCMs

E.g. variables needed by JULES:

Rainfall rate Air pressure Snowfall rate Air temperature

Wind speed Specific humidity
Downward
short-wave
radiation

Downward
long-wave
radiation
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Case study: the Thames

Case study: the Thames

Largest catchment in UK
(∼ 10000km2)

Modellers wanted hourly
sequences, 8 variables,
1km2 resolution
throughout catchment

●
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●

● Stations used for calibration Kennet grid nodes

Negotiated settlement: daily sequences, 5×5km2 resolution, Kennet
subcatchment (186 grid nodes)

Data on (most) variables nominally available from 157 stations, 1970
onwards
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Case study: the Thames

Data availability (I)

Hourly data obtained from British Atmospheric Data Centre (BADC),
MIDAS Met Office dataset

Available variables: rainfall, snow, air pressure, air temperature, wind
speed, downward SW radiation
Missing variables: specific humidity and downward LW radiation

Can be derived from other variables using standard procedures from
literature

BUT . . .
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Case study: the Thames

Data availability (II)

Numbers of stations with data (out of 157)

Rainfall Pressure Temperature Wind speed SWR

71 52 140 135 22

Many stations have short /
incomplete/ patchy records
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Requirements

Weather generator requirements

Need to generate daily data for . . .

Several variables simultaneously, with different distributions and
preserving inter-variable relationships . . .

at many locations simultaneously, preserving inter-site relationships . . .

. . . including locations for which no observations are available . . .

. . . and substantial amounts of missing data at locations where
observations are available
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Overview of approach

An approach based on generalised linear models

Idea: model each variable in turn, in each case conditioning on
previously-considered variables

Justification: generalised multiplication law — any joint distribution
f (y1,y2, . . . ,yk ) can be factorised as

f (y1,y2, . . . ,yk) = f1(y1)f2(y2|y1) . . . fk(yk |y1, . . . ,yk−1) .

Simulate each variable in turn to produce mutually consistent series
Component models for each variable are generalized linear models
(GLMs):

Each value considered to be drawn from its own probability distribution
Distributions for each variable all of same form (normal, gamma, . . .)
GLM-based WGs compete favourably with other state-of-the-art techniques
(e.g. Maraun et al., Rev. Geophys., 2010; Frost et al., J. Hydrol., 2011)
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Overview of approach

GLMs for weather generation

Means of distributions determined by linear functions of covariates
representing, e.g., geographical location, time of year, indices of
large-scale synoptic structure, previous days weather, current days
values of other variables, . . .

Variance usually determined by mean, but can be modelled separately
Dependence on other variables ensures mutual consistency of generated
series

NB dependence in one direction only (generalised multiplication law)

Also need mutual consistency between spatial locations
Addressed using inter-site dependence models
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Package overview

Rglimclim

Software package for developing multivariate, multisite daily weather
generators using GLMs

Runs under R (http://www.R-project.org) on all platforms

Based on earlier Glimclim package — Fortran 77(!), multisite but
univariate weather generator

Adds graphical facilities and diagnostics as well as multivariate modelling
/ simulation capability

Flexible model structures allow development based on physical
understanding rather than statistical convenience

Allows imputation of missing values (see later)
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Package overview

Modelling capability (I)

Distributions currently available:
Normal (not very useful)
Heteroscedastic normal (suitable for, e.g., temperature)
Gamma (suitable for, e.g., wind speed, precipitation intensity)
Bernoulli (suitable for, e.g., precipitation occurrence)

Covariate classes:
‘Site effects’: flexible representation of systematic regional variation
(‘climatology’)
Seasonality: various options available
Autocorrelation: functions of lagged values
Inter-variable dependence: functions of simultaneous and lagged values of
other variables
‘External’ influences e.g. indices of large-scale climate
Interactions: allow effects of one variable to be modulated by others
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Package overview

Modelling capability (II)

Several structures available for representing residual inter-site
dependence to ensure spatial coherence

Most based on correlation structures for standardised / Anscombe
residuals (defined so as to have “almost Gaussian” distribution)

Additional options available for Bernoulli distributions — needed for
realistic generation of spatial rainfall occurrence:

Thresholding of latent Gaussian field with spatial correlation structure —
suitable for large regions
Beta-binomial representation for distribution of ‘wet area’ — suitable for
small catchments where inter-site dependence is uniformly high
Model based on simple binary weather state process (original Glimclim
model — other options preferable)
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Inference

Model fitting and comparison

Models fitted using maximum likelihood under (incorrect) assumption of
independence between sites

Standard IWLS fitting algorithm, augmented to allow estimation of
parameters in nonlinear covariate transformations
Computationally fast⇒ feasible to fit & compare many different models on
large datasets
Lose some estimation efficiency compared with fully-specified spatial
model — unimportant for large datasets
Usual standard errors adjusted for inter-site dependence (‘sandwich
covariance estimation’)

Model comparison using likelihood ratio tests adjusted for inter-site
dependence (methodology of Chandler & Bate, Biometrika, 2007)

Extensive summary and diagnostic information to identify lack-of-fit and
guide model-building process
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Simulation and imputation

Simulation and imputation

Simulated sequences can be either unconstrained (conventional WG) or
conditioned on all available observations:

Allows for multiple imputation of missing observations⇒ quantifies
uncertainty in historical properties
Can also be used to ‘interpolate’ to regular grid — alternative to gridded
datasets

Summary and plot methods check ability to reproduce wide variety of
properties
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Thames: model structure

Example: the Thames again

Variables modelled and distributions used

Variable Distribution

Air pressure Normal distribution with changing mean and variance

Rainfall
Logistic regression for occurrence (wet / dry), gamma
distribution with changing mean & constant coefficient of
variation (CV) for wet-day amounts

Air temperature Normal distribution with changing mean and variance

Wind speed Gamma distribution with changing mean & constant CV

Wet bulb temperature Normal distribution with changing mean and variance

Short wave radiation Gamma distribution with changing mean & constant CV

Cloud cover Gamma distribution with changing mean & constant CV

Model fitted to data from 1970–2000
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Thames: model structure

Thames: structure of multivariate model

Mean sea level pressure (MSLP)Mean sea level pressure (MSLP)

Mean 2m air temperatureMean 2m air temperature

Mean relative humidity at 
~1000hPa

Mean relative humidity at 
~1000hPa

Atmospheric river frequency 
(moisture content >300 kg m-1 s-1)

Atmospheric river frequency 
(moisture content >300 kg m-1 s-1)

Integrated vapour transport during 
atmospheric river events

Integrated vapour transport during 
atmospheric river events

Monthly indices of large-scale 
structure 

Means are for region 50°-60°N, 0°-10°W
Air pressureAir pressure

PrecipitationPrecipitation

Air temperatureAir temperature

Wind speedWind speed

Wet bulb temperatureWet bulb temperature

Local variables in weather 
generator 

Short wave radiationShort wave radiation

Cloud coverCloud cover

Richard Chandler (r.chandler@ucl.ac.uk) Rglimclim 15 / 25



Background GLM-based weather generators Rglimclim Example Summary

Thames: model structure

Thames: detail of windspeed model component

Site s, day t : gamma distribution, mean µst & shape parameter α

logµst = β0 +β1x(1)
st + . . .+βpx(p)

st where {x(j)
st } are covariate values

> WindModel # name of stored wind speed model object
WIND SPEED MODEL - GAMMA DISTRIBUTION
=====================================

Response variable: w_speed_ms

Main effects:
-------------

Coefficient Std Err T-stat Pr(|T|>t)
Constant 10.2918 0.9637 10.6800 < 2.2e-16

1 Legendre polynomial 1 for Latitude 1.2369 0.1013 12.2084 < 2.2e-16
2 Legendre polynomial 1 for Longitud -0.3868 0.0288 -13.4091 < 2.2e-16
...
7 Legendre polynomial 4 for Latitude -0.5098 0.0255 -20.0141 < 2.2e-16
8 Legendre polynomial 4 for Longitud -0.1441 0.0034 -42.6402 < 2.2e-16
9 Mapped_Altitude 0.0331 0.0023 14.4920 < 2.2e-16
10 altitude.std_dev_3x3km2 -0.1145 0.0121 -9.4966 < 2.2e-16
11 MSLP (code 51) 0.0574 0.0100 5.7106 1.127e-08
12 AR300 (code 54) 0.7323 0.0416 17.5900 < 2.2e-16
13 Distance-weighted mean of air_pres[ -0.1535 0.0035 -43.6075 < 2.2e-16
14 Daily seasonal effect, cosine compo 0.0491 0.0061 8.0249 1.018e-15
15 Daily seasonal effect, sine compone 0.1146 0.0063 18.3253 < 2.2e-16
...
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Thames: diagnostics

Checking the fit: seasonality and trends
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Code to generate these plots:

> par(mfrow=c(2,2)) # 2*2 array of plots
> plot(WindModel)

Plots enable quick
visualisation of unexplained
structure in mean and
variability
Unexplained trend in annual
means suggests model
needs improving

Subsequent investigation
revealed spurious trends
in pressure covariate
data
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Thames: diagnostics

Checking the fit: systematic regional variation

Circle sizes proportional to
average residual (“standardised
model bias”) at each site

Solid & dashed lines indicate
under- and overprediction

Thick lines indicate residuals
significantly different from zero
(5% level)

Some big residuals but no
systematic structure — regional
variation captured OK by model

Code to generate this plot:

> par(mfrow=c(1,1)) # Single plot on page
> plot(WindModel, which.plots=3,
site.options=list(add.to.map=TRUE,scale=1.5,coord.cols=2:1))
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Thames: diagnostics

Checking the fit: other diagnostics
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Code to generate these plots:

> par(mfrow=c(1,2)) # Two plots side by side
> plot(WindModel, which.plots=4:5,

plot.cols=c(gray(0.8),"blue"), lwd=2)

Quantile-quantile plot shows
excellent fit of gamma
distributions
Observed inter-site residual
correlations are all over the
place . . .

NB shading intensity
indicates # of
observations contributing
to each pairwise
correlation — avoids
overinterpreting very
imprecise correlations
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Background GLM-based weather generators Rglimclim Example Summary

Thames: simulation and imputation

Thames: testing simulation performance

100 multivariate time series simulated simultaneously at station locations
and Kennet grid nodes (357 locations total), 2001-2009 (validation period)

Also 39 imputations

Calculate summary measures for each simulation — 100 values for each
summary

Compare simulated distributions with envelope from imputations which is
95% interval for actual value
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Background GLM-based weather generators Rglimclim Example Summary

Thames: simulation and imputation

Thames: simulations (I)

Simulations overestimate wind
speed variability here, otherwise OK

Considerable uncertainty over
precipitation due to lack of
observations

Code to generate these plots:

> par(mfrow=c(4,4))
> plot(sim.summary,

imputation=obs.summary,
which.timescales="daily",
which.sites=NULL,
which.regions="Upper Kennet",
which.stats=c("Mean","Std Dev",

"Max","ACF1"),
colours.sim="colour")
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Background GLM-based weather generators Rglimclim Example Summary

Thames: simulation and imputation

Thames: simulations (II)

Same set of
simulations, now looking
at inter-variable
correlations

NB uncertainty over
precipitation again
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Background GLM-based weather generators Rglimclim Example Summary

Thames: simulation and imputation

Thames: simulations (III)

Now looking at seasonal means
for each variable

“Seasons” are user-defined

Check for reproduction of
interannual variability

Code to generate these plots:

> par(mfrow=c(4,4))
> plot(sim.summary,

imputation=obs.summary,
which.timescales="monthly",
which.sites=NULL,
which.regions="Upper Kennet",
colours.sim="colour")
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Background GLM-based weather generators Rglimclim Example Summary

Concluding thoughts

Package is powerful, flexible and computationally efficient compared with
other advanced downscaling methods / weather generators

Easy to produce diagnostics to assess suitability for use in impacts
studies

Provides information on uncertainty due to missing observations (cf
gridded data products)

BUT

Requires good level of statistical awareness — model-building not trivial
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Obtaining the software:

Download from
http://www.homepages.ucl.ac.uk/˜ucakarc/

work/glimclim.html

Useful event?

3rd VALUE Training School: Spatial and Temporal
Variability in Statistical and Dynamical Downscaling,

Abdus Salam International Centre for Theoretical
Physics (ICTP), Trieste, Italy, 3–14 November 2014

http://www.value-cost.eu/node/1143

, Thank you for your attention ,

http://www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html
http://www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html
http://www.value-cost.eu/node/1143



