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Uncertainty in projections of climate change
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• Natural variability of climate system.

• Lack of knowledge about future emissions and aerosols as well as

how the climate system will respond to these future forcings.

• Climate models:

– Parametric uncertainty (e.g.,

sub-grid-scale approxima-

tions)

– Structural uncertainty (e.g.,

unknown, not implemented,

or poorly implemented phys-

ical processes)

? Spatial resolution???



Downscaling
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• GCMs are useful for investigating the large-scale circulation and forc-

ings that affect the Earths global climate but, . . .

• There are limitations to their

use for regional and local pro-

jections that might be of inter-

est to the impacts community:

– Heat waves, drought, floods,

snowpack, etc.

– Skiing, fire, water, crops,

public health, power, etc.

• Generating regional climate in-

formation on the basis of GCMs

is referred to as downscaling.



Downscaling
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• Statistical downscaling is a computational efficient approach that

uses empirical relationships to connect the coarse-resolution GCM

output to regional and local variables.

• Dynamic downscaling uses high-

resolution climate models, in-

corporating physical principles;

shown to reproduce a broad

range of climates around the

world.



Regional climate models
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Two questions
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1. Moving to higher resolution requires certain tradeoffs and considera-

tions. One question that arises is the impact of resolution on choice

of physical parameterization.

2. Higher resolution model experiments (and climate model experi-

ments in general) are very expensive. A second question that arises

in how to assess the added value from downscaling methods like

RCMs?



Resolution vs parameterization
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• Part of the COordinated Re-

gional climate Downscaling EX-

periment (CORDEX).

• ICTP RegCM V4 w/boundary

conditions providing by ERA-

Interim reanalysis.

• 20 years (1989-2008) of

monthly total precipitation.

• Two model resolutions (25km

and 50km).

• Four convective parameteriza-

tion schemes (A, E, F, G).

A

E

F

G
50km 25 km

transformed monthly precip



Local ANOVA
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Fit a local analysis of variance model (ANOVA), i.e. find coefficients β

that maximize
n∑
i=1

Kh(s− si)`(yi;β)

where `(yi;β) is based on the Gaussian likelihood yi ∼ N
(
Xβ, σ2

)
with

X containing linear terms for location, main effects of physics and res-

olution, and interactions between physics and resolution.

• A finite support kernel (biweight) is used with h chosen to include

a 7x7 neighborhood.

• Each month considered separately.

• Impact of the interaction terms by measuring the “extra sums of

squares” between a full and reduced model.
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Initial results suggest that there are significant resolution interactions,

but they are smaller than monthly differences, differences due to con-

vective parameterizations, and year-to-year variability.



Connections to spatial statistics
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Most spatial estimators are local smoothers:

Ŷ0 = w′Y =
n∑
i=1

wiYi

For example, Kriging yields w = c′0Σ−1Y.

Consider the local linear kernel estimator that is found by maximizing

−
1

2

n∑
i=1

Kh(x− xi) {yi − α0 − α1(x− xi)}2

and yielding Ŷ (x) = α̂0.

The local linear (as well as the more general local polynomial) estimators

can also be written as a linear smoother.
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Why do we care?
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• The local linear approach is easy to implement on a cluster with a

finite-support kernel.

• Properly calibrated, it is (approximately) equivalent to Kriging.

• As for calibration (i.e., picking the bandwidth/window) – still an

open question, but we have some initial analytical results and some

ideas based on sampling.

• Extensions – the local polynomial objective function is equivalent to

a local likelihood, i.e. find the maximum of

n∑
i=1

Kh(x− xi)`(yi; θ),

which opens the doors for non-Gaussian data, multivariate (func-

tional ANOVA?) and space-time data, etc.



NARCCAP – Added value
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• North American Regional Cli-

mate Change Assessment Pro-

gram (www.narccap.ucar.edu)

– NCAR, ISU, CCCma, OURA-

NOS, LLNL, GFDL, Hadley,

Scripps, PNNL, USSC, etc.

– NSF, NOAA, DOE, EPA

• Systematically investigate the uncertainties in regional scale projec-

tions of future climate and produce high resolution climate change

projections using multiple RCM and multiple GCM simulations.

• 4 GCMs provide boundary conditions for 6 RCMs – balanced half-

fraction



The NARCCAP design
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Phase I Phase II
NCEP GFDL CGCM3 HADCM3 CCSM

CRCM • • •
ECP2 • • ??
HRM3 • • •
MM5I • • •
RCM3 • • •
WRFG • • •

• Phase I: 1980-2000

• Phase II: 1971-2000 (Current), 2041-2070 (Future)

• All future runs use the A2 scenario

• Focus on seasonal summaries (e.g., summer - JJA - temperatures)
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The DCT
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Let Yk denote an n1×n2 matrix of seasonal temp/precip for each of K

data sources. Transform the Yk to Zk via the two-dimensional discrete

cosine transformation (DCT), i.e.

Z(t1, t2) = at1bt2

n1−1∑
s1=0

n2−1∑
s2=0

cos

[
π
t1
n1

(
s1 +

1

2

)]
cos

[
π
t2
n2

(
s2 +

1

2

)]
Yk(s1, s2).

• Zk(0,0) is the overall mean of Yk.

• Zk(t1, t2) corresponds to the feature with frequency ω = (ω1, ω2)

and ω1 = t1/(2n1) the frequency of the rows and ω2 = t2/(2n2) the

frequency in the columns.



The DCT
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Group the Zk by resolution, i.e. let Zi = (Zi1, . . . , ZiK)′ defined by (ti1, ti2)

and ωi = (ωi1, ωi2). Assume

Zi ∼ N
(
0, d−1

i Σ(fi)
)
,

where di determines the relative variance of Zi and fi = ||ωi||.

• Let

di = 4− 2

[
cos

(
ti1

π

n1

)
+ cos

(
ti2

π

n2

)]

• Let

Σ(f) =
L∑
`=1

w`(f)Ω`.



Data sources
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• NARCCAP Phase I model output

– CRCM, ECP2, HRM3, MM5I, RCM3, WRFG.

• NCEP

• Observational datasets (CRU, UDEL).

• 20-year (1981-2000) averages of seasonal (JJA, DJF) temperature

and precipitation.

• All data sources interpolated to common 50km grid.

• Measures of added value obtained by examining Σ(f) at different

frequencies.

– Marginal variances, marginal correlations, conditional correlations...
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Connections to spatial statistics
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With the prescribed di and by letting Σ(f) be constant for all f , then this

model is equivalent to a multivariate conditional autoregressive (MCAR)

model, i.e.

Y ∼ N
(
0,Σ⊗Q−1

)
where Q has a prescribed form based on a simple neighborhood structure

(grid boxes that sharing edges).
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The Climate Corporation aims to help farmers around the world protect

and improve their farming operations with uniquely powerful software

and insurance products.

Combine hyper-local weather monitoring, agronomic data modeling, and

high-resolution weather simulations to deliver solutions that helps farm-

ers make better informed operating and financing decisions.

To achieve these ambitious goals we use a wealth of data (gauge and

other instruments, gridded data products, remote sensing, numerical

model output, etc.) coupled with powerful applied statistical and ma-

chine learning tools.



Questions?

26

Thank You!
steve.sain@climate.com


